Usage¶
Installation¶
You can install the package via pip:
pip install textpredict
Quick Start¶
Initialization and Simple Prediction¶
import textpredict as tp
# Initialize for sentiment analysis
model = tp.initialize(task="sentiment")
texts = ["I love this product!", "I hate this product!"]
result = model.analyze(texts, return_probs=False)
print(f"Sentiment Prediction Result: {result}")
Using Pre-trained Models from Hugging Face¶
model = tp.initialize(
task="sentiment",
device="cpu",
model_name="AnkitAI/reviews-roberta-base-sentiment-analysis",
source="huggingface",
)
text = "I love this product!"
result = model.analyze(text, return_probs=True)
print(f"Sentiment Prediction Result: {result}")
Using Models from Local Directory¶
model = tp.initialize(
task="sentiment",
model_name="./results",
source="local",
)
text = "I love this product!"
result = model.analyze(text, return_probs=True)
print(f"Sentiment Prediction Result: {result}")
Training a Model¶
import textpredict as tp
from datasets import load_dataset
# Load dataset
train_data = load_dataset("imdb", split="train[:10]")
val_data = load_dataset("imdb", split="test[:10]")
# Initialize and train the model
trainer = tp.SequenceClassificationTrainer(
model_name="bert-base-uncased",
output_dir="./results",
train_dataset=train_data,
val_dataset=val_data
)
trainer.train()
# Save the trained model
trainer.save()
# Evaluate the model
metrics = trainer.evaluate(test_dataset=val_data)
print(f"Evaluation Metrics: {metrics}")